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On Thermal Effects in the Theory of Rods

by

A. E. Green* and P. M. Naghdi#

Abstract. This paper is concerned with thermomechanics of slender rods by a
direct approach based on the theory of a Cosserat curve comprising a one-
dimensional curve and a pair of directors attached to every point of the curve.
In all previous developments of the thermo-mechanical theory of rods by direct
approach, only one temperature field has been admitted. This allows for the
characterization of temperature changes along some reference curve, such as the
line of centroids of the (three-dimensional) rod-like body, but not for
temperature changes across the rod cross-section. A main purpose of the present
study is to incorporate the latter effect into the theory; and, in the context
of the theory of a Cosserat curve, this is achieved by a recent approach of
Green and Naghdi [1,2] to thermomechanics which provides a natural way of
introducing more than one temperature field at each material point of the

curve. Apart from full discussion of thermomechanics of rods and thermo-
dynamical restrictions arising from the second law of thermodynamics for rods,
attention is given to a discussion of symmetries (including material symmetries)
of rods which in a reference configuration are straight. The paper also con-
tains a detailed discussion of the linear theory of straight, elastic, ortho-
tropic rods, including the determination of the relevant constitutive coefficients.

YMathematical Institute, Oxford OX1 3LB, U.K.

*Department of Mechanical Engineering, University of California, Berkeley,
California 94720, U.S.A.
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11 Introduction
This paper is concerned with thermomechanics of slender rods by a dirzct

approach based on the theory of Cosserat (or directed) curves. A Cosserat

curve considered here is a body R comprising a one-dimensional curve (embedded
in a Euclidean 3-space) and two directors (i.e., deformable vectors) attached
to every point of the curve? The development of a complete theory of a Cosserat
or a directed curve with two directorc begins with a paper of Green and Laws
[3] whose derivation is carried out mainly from an appropriate energy equation,
together with invariance requirements under superposed rigid body motions. A
related theory of a directed curve with three deformable directors at each
point of the curve, developed in the context of a purely mechanical theory and
with the use of a virtual work principle, is given by Cohen [4]. A further
development of the basic theory of a Cosserat curve along with certain general
developments regarding the nonlinear and linear constitutive equations for
elastic rods is contained in the more recent work of Green et al. [5]. For
clarity's sake, we may recall that the material curve of R can be identified
with a particular reference curve (often taken to be an interior curve) in
the three-dimensional rod-like body, e.g., the line of centroids of the cross-
section of the rod in some fixed reference configuration; the directors st
each point are regarded as representing the material filaments across the
reference curve, i.e., in the cross-section of the rod.

Throughout the previous developments of the thermo-mechanical theory of
rods by direct approach, only one temperature field has been admitted and this
allows for the characterization of temperature changes along the reference

curve of the rod-like body. Some indication of how temperature changes across

*

The body C is taken to model some of the properties of a three-dimensional
body of rod-like character. When the directors are absent it reflects the
properties of a material curve appropriate for the construction of string
theory.
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the reference curve of the rod-like body could be dealt with has been given in
the paper of Green and Naghdi [6] by using three-dimensional approximations,
but no direct thermo-mechanical theory of rods with more than one temper:iure
has been discussed in the literature so far.

£lthough widespread use of the Clausius-Duhem inequalities has been made
in three, two and one-dimensional continuum thermodynamics, these inegqualities
have been subject to the criticism that in some circumstances they do not
reflect adequately ideas associated with the Second Law of Thermodynamics.
Green and Naghdi [1] have developed a new approach to three-dimensional
continuum thermomechanics which is independent of any particular mathematical
expression of the second law and which imposes some restrictions on the
constitutive assumptions leading to a reduction of a number of independent
response functions (or functionals) in the set of constitutive assumptions.
In the present paper the same approach is used for a Cosserat curve and this
provides a natural way of introducing more than one temperature field? When
the directors are absent, the theory reduces to that of a material curve which
may be a material curve surrounded by another continuum.

Epecifically, the contents of the paper are as follows. Section 2 contains
a concise summary of the various basic results of the purely mechanical theory
of a Cosserat curve with two directors. With reference to thermal properties,
in section 3 we admit at each material point of the curve of R a number of
different one-dimensional temperatures and different one-dimensional entropies,
zs well as related thermal fields; and, in parallel with one-dimensional con-
cervation laws for balances of mass and momenta, we postulate balances of
entropy. Next, we recall the balance of energy for the Cosserat curve; and,

following the recent approach of Green and Naghdi [1], after elimination of

*For the purely mechanical theory, it is already clear how to extend the theory
with more than two directors.
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the assigned fields -- i.e., assigned force, assigned director forces and
external rates of supply of entropy -- regard the resulting equation as an
identity to be satisfied for all thermo-mechanical processes. In section L,
b we briefly discuss thermoelastic theory of a Cosserat curve on the basis of
the new procedure in thermomechanics (see section 3) and also compare the
results with earlier developments (see Green and Laws [3], Green, Laws and
Wenner [5]) involving only a single temperature.

A new inequality representing the second law of thermodynamics for rods
baced on the present authors' earlier work (Green and Naghdi [1,2]), along with
restrictions on heat flux vectors and the specific internal energy are obtained
in sections 5 and 8, respectively, while sections 6 and 7 contain a discussion
of relevant results for rods obtained from the three-dimensional theory. The
last two sections, namely sections 9 and 10, are devoted to a discussion of
symmetries (including material symmetries) for rods and the linear thermo- f
elastic theory of straight orthotropic rods. The developments in sections 9
and 10 supplement our earlier results by direct approach (Green et al. [7])
for thermoelastic rods in the presence of a single temperature and previous

values for constitutive coefficients in the linear theory.
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2. Summary of mechanical theory.

In this section we summarize the main kinematics and the basic equations
of the mechanical theory of rods based on the work of Green and Laws [3] in
the form developed by Green, Naghdi and Wenner [5] . A rod is a body R
comprising a material curve with two deformeble directors attached to every
point of the curve. Let the particles of the material curve of R be identified
with a convected coordinate { and let the material curve in the present configura-

tion at time t be referred to as c. Let r be the position vector of ¢ and

ga (d=1,2) the directors at r. A motion of the rod is then defined by*
B = I;(C’t) ’ gd = E-a(c’t) ’ [59213] >0 (2.1)
where
a; = 25(Cst) = 3r/ag =

is a vector tangent to the curve c¢ and the directors Ea have the property that
they remain unaltered in magnitude under superposed rigid body motions. The

velocity and director velocities are given by
= r = ; t %
v r(c,t) § W d (C, ) ’ (2.3)

where a superposed dot stands for material time derivative with respect to t
holding { fixed. In the reference configuration of R which we take to be the
initial configuration, let the material curve of R be referred to by C and
denote the initial position vector by E, the tangent vector to C by QB and

the initial directors by Ea' Then,

-

f 4 fThe positive sign in (2.1); is taken for definiteness. Alternatively, it
N will suffice to assume tha% [glgeg ] #0 with the understanding that in any
| given motion the scalar triple product [%2‘3] is either >0 or<O.

-
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R =R(C) = r(C,0) , Ay =As(C) = 3R/aC = 2 (C,0)

(2.4)
D =D = d 0 .
D, = 0,(¢) =4 (¢,0)
We assume that the kinetic energy of the rod per unit length of c is
given by
T=Lp(v.v+ayPv.ow +y%® .w) 2.5)
2p~ Vtey 'V "8 o - ’ (

where p= p(g,t) is the mass per unit length of c and the inertia coefficients

op_ B0 oB_ Ba

y =Yy =y"" are functions of { and independent of t. We define momenta

per unit length of ¢, corresponding to v and Ya’ as

§—§=p<yy°aye> : %w(f“yy“ay : (2.6)

respectively. In (2.5), (2.6) and throughout the paper, we use the summation
convention for repeated Greek indices over the values 1,2.

With reference to the present configuration at time t, for each part of c
between {=qa, (=8 we postulate the equations of mass conservation, momentum,

director momentum and mcment of momentum as follows:

g
&) pas=o0 (2.7)
o
B B
'(%' Iap(xﬁ yoaﬂa)ds = jdp fds+ [2']2 4 (2.8)
B A
c;i—t J.ap(yoax'*yaay‘e)ds = Ja( p&c" - a3§1'~ra)ds + [g“]z ’ (2.9)

d IB oB oo af
e + +d * ds
3t ap{;;x (+y Tug) +d x (F v +ywg))
8
= +a_x 4%)ds + +a_xp*® 2.10
Jap(};x’f; Naxﬁ)s [z;xg haxg ]a s ( )
where in the above integrals the limits are for values of { equal to o and B,

=ga_+a {2.11)
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and where we have used the notation
[(£(6,6)18 = £(8,8) - £(ast)

Also; in (2.8) to (2.10) n= Q(C,t) is the contact force and EO':ga(g,t) are
the contact director forcesf each a three-dimensional field in the present
configuration; f= E(g,t) is the assigned force and £a=£a(c,t) are the
assigned director forces, each a three-dimensional vector field and per unit
mass of c; EOI:EQ(;,t) are the intrinsic director forces which make no con-
tribution to the supply of momentum and to the moment of momentum.

Under suitable smoothness assumptions the field equations corresponding

to {(2.7) to (2.10) are

1

L

oo -
/3¢ AL = My +y*h) (2.13)
330+ MY = 1Ay (2.14)

o o .
g xn+ad x (L -y L-y%ﬂ&g/h; , (2.15)

where

m = gaxg'a p (2.16)

" po(;) is the reference density and A33=1’§‘3 . 5‘3 is the dual of (2.11)2.

tie have the same dimensions as r, then p and R have the same dimensions.
On the other hand, if the directors are chosen to be dimensionless, then P.
are usually called contact director couples.
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3= Thermal properties. Thermodynamical theory of rods.

In existing works on the theory of a Cosserat (or directed) curve, only
one temperature field is zdmitted and this is regarded as reprecsenting the
temperature. varistion slong some reference curve, such as the line of centroids
of the cross-section of the rod-like body. Also, the effect of the thermal
boundary conditions on the mzjor surface of the rod-like body* ie incorporated
into the theory through the external curve rate of supply of l.eet. The varia-
tions of the temperature zcross the rod cross-section have not been modelled so
far by a direct approach (within the scope of the theory of directed curves),
although some indications of how this could be effected are implicit in some
work on thermoelestic rods from the three-dimensional equations by the present
authors [6]. As already noted in §1, because of the new approach to thermo-
mechanics of continua introduced recently by Green and Naghdi [1], it is now
possible to account in a more general manner for the thermal properties of a
rod-like body in a direct formulation based on a Cosserat curve.

Thus, at each material point of the material curve of R, we introduce

scalar fields 9= 0((,t) and @ =9 (¢,t) (N=1,...,K) representing
vt el MR L tde

the effects of temperature variation in a rod-like body. The curve temperature 8,
which we require to be positive (8>0), represents the absolute temperature in the

curve c¢ of the rod-like body, while the scalars ea oy oy account for temperature
0

varistions across the cross-section of the rod; the scalars 9 re

a
@y, - oy

assumed to be completely symmetric in the indices R YRR which take the

values 1,2 only. Along with the temperatures ¢ and ea o . we admit the
G0 -
existence* of external rates of supply of heat r=r({,t), r =y
Wty Syop-riy

tThe terminology of major surface refers to the surface specified by (6.4) in

§6.

The external rates of supply of heat r and r“l@z“'“h include contributions
corresponding to heat fluxes on the major surfaces of the rod. They are not the

same as quantities defined with a similar notation in Green and Naghdi [(6].

(¢,t)

+




per unit mass of ¢ and external rates of heat fluxes E, h a
e

over each end section of the rod. Also, we assume the existence

nd

=N
= 1]

b
@y - oy

of internal heet fluxes h=h({,t), (¢,t) along the rod st

h =h
ol M L e

each point {, in the direction of increasing {, per unit length per unit time.

Each function r is completely symmetric in the indices

hie A
alaz.-.aN alaz...aN
& 9l 5 e e 5O The total externzl rate of supply of heat per unit mass of c is

defined as

r+ o r ” (3.1)
a,N %1% %y

where the summation in (3.1, is over all values of @) 50Oy = 1,2 end for all

N=1,2,...,K. CSimilarly the totazl internal heat flux at the point ( is defined

by
h+ T h . (3.2)
a,N %1% %
We now define the ratios of the heat supplies r and r to tempera-
a0 ay
tures @ and 6 , respectively, as s=s({,t) and s =g (¢st)
) e vy Wiy Y

and call these the external rates of supply of entropy per unit mass of c.

=

Further, we define the ratios of H,ﬁ to ¢ and h -
alaz...aN alag...aN

P , respectively, as the external entropy fluxes k,k,k 5
=°'l°‘2°"°‘N 0ty e e Oy
k over the ends of the curve c¢c. Similarly, we define the ratios of
By o = 4oy

h and h to the temperatures @ and 9 s respectively, as the
e iy o il

internsl entropy fluxes k=1x({,t) and k =k

- e S e~ iy

length of c, in the directicn of increasing {. The above definitions may

to

(¢st) per unit

conveniently be summarized bty

s

.

<
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s=r/0 , s =r /8 s
aqug...aN alag...a:: Q'lag...a/N
E 5 E/e ) E = H "/e ’
alaz...aN alag...a,_ alag...aN (j 3
S0
k=h/g , k % e h ./ ]
alag... N alae... : alaz...aN
k=hig 5 k = 3 /0
%o sy  Oaloresly O &~y
We require that the fields s . k . i s K
T - R, e L L AR
defined by (3.3) all tend to finite limits as i aN-co for each N=1,2,...,K.
2y

In addition to the thermal fields already introduced, at each point of the
material curve of R in the present configuration, we assume the existence of

scalar fields T=1((,t) and 1 =1 (¢,t) called specific entropies
Mpiprtely SOy
and internal rates of production of entropies £=2({,t), € =
22 — Q. S
1%
(¢>t) per unit mass of c, where 1 and € are completely
ala2-..aN ald2cooaN

The contributions of these internal rates

oy ay

symmetric in the indices 0 50 se e e 5Oy

of production of entropies to the rate of production of heat is

BE+ T 0 - (3.4)
o i Ry Oy G e e oy
per unit mass.

We postulate balances of entropies for every material curve of R occupying

*
a part oS{=p in the present configuration and write

p B
at [ onas = [ otergiae- 2}, (3.5)

o
8 g
d 8 :
p'n ds = p(s +§ )ds- [k ] - (3'6)
dt Id alaz...aN .[a alaz...aN alaa...aN cxla2...aN o
Under suitable smoothness assumptions it follows from (3.5), (3.6), (2.11)l and

(2.12) that

*

A motivation for postulating (3.5) to (3.6) for balances of entropies is
provided by consideration of derivations from three-dimensional equations
in §7.

T
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= A(s+g) - dk/3C ,

~
w
.
=3
e

AT =\ ) - 3k 2
Xnalae...aN (salag...aN+§ala2...al\J ° alag...opN/ Q

We now introduce the first law of thermodynamics or the balance of energy
for the Cosserat curve R. This states that heat and mechanical energy are
equivalent and that together they are conserved for every part of the material
curve of R. Thus, with reference to the present configuration, the balance of

energy may be stated in the form

B
d 1 o, of
azfa“e+é‘l'x+2y L gt g las
TB[ £ X 1
= g+ B e o v+ 4 +w Jds
a T b g ol i
o B
+ .Vt . -h- h .8
([n.v+p”.w L ) (3.8)

where e::e(g,t) is the internal energy per unit mass of c¢ and repeated indices
are summed over the values 1,2. With the help of (3.7), (2.12) to (2.16) and
under suitable smoothness assumptions, the field equation resulting from (3.8)

is

x(e+en+zedla2 c"N"’1°‘2 “N)

TN ey ey

P-k 30/3C- T k 20 fog =0 , (3.9)
: i o Ty Tty 3

where the mechanical power P per unit mass of ¢ is defined by
P=n- BX/BC*'E?‘ w +p¥. 3Ea/ag : (3.10)
Introducing the Helmholtz free energy function y= y({,t) per unit mass of ¢ by

=¢-0M- Z 6 y (3.11)
i aN°'1°'2“°‘N°‘12"'°‘N

10.
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the energy equation (3.9) may be written in the alternative form

A(§+ 08+ T T, 8 )
| OF S -l e
- (e
i a, o‘l°’ aN L o‘N
+P -k 36/3(C - z k B =0 . (3.12)

N %% "°‘N °‘1°’2"'°‘N
For a given Cosserat curve having a reference density po(g), the field
equations obtained from the integral form of the ccnservation laws involve a
set of g (k+1)(K+2) + 12 functions. These consist of the deformation functions

r,ga and the temperatures 9’6“102"'“N’ i.e.,

’d- ’e,e ) '13)
{r.d, “1“2"-%:} (3

the various mechanical and thermal fields, namelyf

) (3.1k4) |
Uy Oy e+ <y bl 10 -0y °’1°'2"‘°‘N]

and

a ’
{£s£ ’s’sdld?_-udN} . (3.15)

We assume that the fields (3.14) are specified by constitutive equations which
may depend on the variables (3.13), their space and time derivatives, as well

as the whole history of deformation and temperature. We then adopt the fol-

el

lowing procedure in utilizing the conservation laws‘

(1, The field equations are assumed to hold for arbitrary choice of the

-

functions (3.13) including, if required, an arbitrary choice of the space and

E

time derivatives of these functions;

 "Sad o
P

"he density p is rot included in (3.14) and (3.15) since, given (3.13), p can
be calculated from (2.12).

1:jc'or a more elaborate parallel discussion in the context of the three-dimensional L
theory, see Green and Naghdi [1, §2]. F

1l1.
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(2) The fields (3.14) are calculated from their respective constitutive
equations;

(3) The vezlues of the variables (3.15) can then be found from the balances
of momenta (2.1%) and (2.14) and balances of entropy (3.7);

(4) The equation (2.15) resulting from the balance of moment of momentum,
and the equaticn (3.12) resulting from the energy equation, will be regarded as
identities for =very choice of (3.13). This will place restrictions on

constitutive eguations.

We note that the quantities E, o Ts o, may be arbitrary
g gidli'z-..dN n nalaz...aN ‘#
to the extent cof additive functions f,f i 5
e e S L
~gf= g9 i , respectively, where f,f are arbitrary
a1 Y%=ty 0 el b i

functions of the variables (3.13), their space and time derivatives and
functionals of their histories. The additive functions have the property
that they make no contribution to the differential equations for Eﬁga’e
ealaé...aN and the boundary and initial conditions. They also make no contribu-
tion to the energy identity (3.12) and no contribution to the internal energy ¢.

We remove this arbitrariness by setting

A A
PR v T T e S
10 o 0 e
(3.16)
f = 0 ) f = 0
dlag...aN

Then, the functions €,E are determined uniquely and 7,7 are

B - ol %« Oy
only arbitrary to the extent of additive functions of {, independent of t. The

A A
functions f,f in (3.16) can then be determined by specifying values
020
for 1,7 in some reference state.
b b

So far nc mention has been made of restrictions on constitutive equations

which may arice from some form of second law of thermodynamics, usually
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interpreted in terms of an "entropy inequality." Before considering this and
in order to gain some insight into the nature of our procedure described above
we ctudy in the next section the relatively simple case of an elastic rod.

For later use, we record the expressions for the external work and the
external heat supplied to any part oS (=g of the curve of c during the time

intervel tl§1:§t First, however, guided by the results of §4 we observe

X

that in the case of an elastic rod the response functions y,T,7 €
i LR

depend only on the vectors ga,ga,agq/ag and the temperatures 6’0“102"'°N a

are independent of their rates and the temperature gradients ae/ag,

nd

36 /3C.  Such an elastic rod will be regarded as nondissipative in a

Gy« =y
sense that will be made precise later; and in conjunction with an expression
for the external mechanical work supplied to any part q=({=pg of the curve c,
will be used as a basis for establishing in §5 an inequality representing the
second law of thermodynamics for dissipative materials. Keeping this background
in mind, we assume that the constitutive response functions for e,T include
also dependence on the set ol variables ga,ga,agd/ac,a,ealaz...aN,ae/ac,
aea % aN/aC and their higher space and time derivatives and refer to this

10 :

set collectively as y. Further, let ¢’,N’ denote the values of €,T, respectively,

when the set Uy is put equal to zero in the response functions. Thus, for example,

>
b 5 B
€ € (2,3:20,320/3%6,6“1&2_“%)
°(i3’9q’390/3C’°’°a1a2-..aN’O) ,

v = (é'3 ,é-q’aé-JaC,é,é

b

= e(a;,4 ,24 /3(,0,0

(3.17)

,30/3(,20 J8soss)
ala2...aN C alae...aN c

where the dots iu (3.17)3 refer to the higher space and time derivatives of

éa’...’éalab"‘“N. Then, with the help of (2.12) to (2.14) and the integral

13.
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of (3.8) with respect to time, we obtain

and

where

W

External mechenical work supplied to & psrt o£(Z8

of the rod during the time interval tlété t2

t, . B :
=J‘2_|f!" p(f-v+za-w )ds+[n-v+p°’-w ]B‘» dt
R e S ~ ~ ~ ~aa)
1
BK + AE+ o+ W, (3.18)

gl

Fxternal hest supplied to a part oS ({=p of the rod

during the time interval tl sts t2

'-t B
2 )
plr+ Tr Yas-[h+ = h 1P4 at
Jtl{Ja a,N 9% % o, S0y “}
_E-mz 4 (3.19)
2] oo
" olen’+ = o 7 )ds dt
% wsl M% Yy %Oy
ty o8 B
W, = [ 3 pwds &t , E= | peds , (3.20)
°tl o o :
K = ?Bl (v v+2y°av w +yaaw «w,_)ds
‘qu P M "‘B 5

The prefix A in (3.18) denotes the difference operations or functions and fields

during the time interval [tl,ta], e.lsy OAB= E(tz) - E(tl). Also, w in (3.20)

is given by

2

1k.




AW

P-A(e-¢') - A(y'+7'0+ ET]

)
N ¥ %Oy 000y

(3.21)

-Al(-n")e+ ¢ ( - )8 ]
T Nnal2 ‘o Tl°‘1°‘2"'°‘N e e Oy
+ \(0E + ):e
S oy oyt aye ey
+k 36/3C+ T k T
/3 a,N %1% " °‘N °‘ N/c

v’=c-en-zeala2 °‘1°’1°‘2 oy

150

(3.22)




4. Thermoelastic rods

A thermoelastic theory of rods by a direct approach was given by Green and
Laws (2] and was developed further by Green, Laws and Neghdi [7] and by
Green, Neghdi and Wenner [5). The previous work made use of a one-dimensional
Clausius-Duhem inequality and only one temperature field was considered, which
corresponds to the curve temperature @ of the present paper. We consider now
constitutive equations for a thermoelastic rod which admits (K+1)(K+2)
tempersture fields énd we examine the restrictions imposed on these equations
by the procedure described at the end of §3.

We assume that the set of variables (3.14) are functions of

a5 5 4, » 34 /3C, 85 ea‘l%m%I s 30/3C » aeala?maN/ac , (k.1)

as well as the reference values

Ay s D s ago/a; , ® (4.2)

and in addition may depend also on the particle {. In the set of reference

values (4.2), ® is the constant reference value of @ and we have assumed that

the reference values of @ (=1,2,; N=1,2,...K) are zero. Postponing
. iy

the restrictions to be imposed by the invariance requirements under superposed

rigid body motions and recalling the procedure outlined in §3, the energy equa-

tion (3.12) is identically satisfied for all thermomechanical processes provided

- 3 )
aZae’acS =8 3 o T (4.3)

ayy- -y
¥ = ¥(a ,ga,ago/ac,e,edlaemaN; A3sD >3 /30,05 () (b.b)
- @_ , B o 3y
g—kai ,g—k%,g—kéﬁa—i, (4.5)
TR e (4.6)
TTTC Tgny” W e
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A(eE+ T 8 3 ) +k3e/al+ T k (38
T, %Oy e Oy o, %1% 0y Oty

/3g)=0 ,
where ss indicated in (4.3), the function y it independent of temperature
gredients. It is understood that ealaé"'aN appears in E only in a form which
is completely symmetric in the indices ®a,-- -y Formulse (4.5) and (4.6),
with 8“102“'0N absent, were obtained by Green, Naghdi and Wenner (517 witn
the help of the Clausius-Duhem inequality. Alternative forms for the results
(4.4), (4.5) and (h.6)l have been given by Green and Laws [3] and by Green,
Naghdi and Wenner (5] after making use of invariance conditions under super-

posed rigid body motions. For later use we record one of these alternative

forms here and for this purpose we introduce the notations

=8 » By=d-g 5 Ay ~8 W/
g ey 1 4 .3 K
@ .da;=8 , h'=a.a , n=-detny, ,

where Latin indices take the values 1,2,3 and, from (2.1), we recall the

condition

h% = ['d\.ll%ga] > 0 ’

1
s0 that h® is a single-valued function of h For the duals of quantities in

13

(L.7)

(4.8)

(4.9)

(4.8) defined relative to a reference configuration, we employ the corresponding

capital letters, e.g., Aia’ Hij’ etc.
Under superposed rigid body motions the vectors Ea,ga,ago/ac become
Q 23 Q gu’ g(agﬂ/ac), where Q is a proper orthogonal tensor function of the

time, and the corresponding value ¢+ of the free energy response is given by

fIn this paper p. 490, equation (7'5)h should read g“==xai/ag;-

17.
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+ b " »
¥V = W(QEB,QSQs%aE-(/aC, e,ealag‘ . .aN : -:’E,J:q

,ayo/ar;@; 2 . (4.10)

Then, by (4.4), (4.10) and the invariance conditicr. ¢ = {, Wwe have

) (St

2
d,\
g
-

~ ~

(g 2558 4,934 /3C,-0) = Y(gsd s

for all vroper orthogonal tensors Q. It follows “rom Cauchy's representation
theorem that y may be expressed as a different furction of the inner products

and scelsr triple products of a3,§a,ad d(, namely the inner products (L\.8)2 3 and
o~ ]

l4,8p4,] 5 (4,434 /ac) » [gyd2d /30) 5 [4,d.3d /ac]

(d,3d,/3¢ ad /3¢ -

(k.12

In view of (4.9), each of the scalar triple products in (4.12) may be expressed

3
as a single-valued function of h® and (4.8) and hence of hij and A, -

2,3

Similarly, if instead of (2.1). or (4.9) we make the choice [gl,ge,g3]<o for

3
all motions, tuen we may again reduce {§ to depend cnly on hij’kai’ apart from
the reference variables and temperatures. Hence, we may replace (4.4) by the

different single-valued function

/\A
y = ‘”(Yiy“ai’e’%la?...aN;ﬁa’Ea’BPo_/a"g’ ¢ (4.13)
where
yij=hij-Hij r Ry = Ay ohy - (b1,

a.]#0 and let al be their reciprocals.

e s r
Let &4 ve a set of base vectors with -iaﬁeaa
The base vectors ay ordinarily will be taken to be orthogonal but this is not

essential at this point in our development. It is now convenient to introduce
the component forms of the kinematic variables Ed’g} and of the kinetic variables

relative to the base vectors a

a, or E}' Thus, we write

18.
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(4.15)
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It then follows from (4.5), (4.6) and (4.13) that J

A ’ A
Fe oot 3 vi. - | ae i L LR, - =X}
a . (" -x"p ) =2 a4 =y
i V. 335 ’ ; i%. Mya :
. - y i A 1
dahﬁl-kﬂfﬂ+dqﬁﬁl-haﬁ')=MAJM- ;
V. : ! V. aYO’B
(4.16)
A
pal o Ad ].- a%_ s
J o
a0 5%
o .
1 s M e
36 ¥y 236

ey

and in evaluating (h.l6)l’2,3, Q is regarded as a function of Y33’Ya3 and
%(Yaai-yaa). The results (4.16) are equivalent to (7.40) in Green, Naghdi and
Wenner (5]; those in Green and Laws (3] are a special case of (4.16) when
éd:=2d’ apart from some changes in notation and definitions.

With the help of (2.14) and (2.16), the moment of momentum equation (2.15)

can be expressed in the form

agxn+d xn’+ (ag /3€)xp¥ = 0 . (4.17)

This equation is identically satisfied by the expressions (4.16). This implies
that the only relevant field equations are (2.13) and (2.14).

In a similar manner, with the help of invariance conditions under super-
posed rigid body motions, the entropy flux functions k’kalaz"‘an may be reduced
to depend on the variables displayed in (4.13).

With the help of (4.5) and (4.6) we see that the expression for w in

(3.21) is zero and the external mechanical work W and external heat supplied

# in (3.18) and (3.19) reduce to

19.
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b= AK+ AE’ +1p (4.18)
and
H=-b , (4.19)
where
B
E' = I pe ‘ds (4.20)
o

and K and Wb are defined in (2.20).

i
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The second law of thermodynamics

Previcusly, in the context of the three-dimensional theory, Green zrd
Zzghdi (1,27 have discussed the nature of thermodynamic irreversibility
srising from a mathemsticsl interpretztion of a statement of the second law
nemely thet "it is impossible completely to reverse a process in which energy
is transformed into hest by friction." Here we follow the same procedure and
reconsider z mathematiczl interpretsztion of a second law appropriate for a
direct thecry of rods wnich admite more than one temperature field. In esrlier
works [3,5], a Clausius-Duhem inequelity was used and only one temperzture
field was admitted.

The state of s rod at time t which is regarded as representing a thin
rod-like three~dimensional body, is described by the position vector r and the
directors d the velocities V¥ o the temperatures e,ealaz”.aN(N=l,2,...,K)
throughout the curve c, together with the constitutive response functions for
the fields(3.14). A thermo-mechanical process or simply a process is a time
sequence of states: it is a continuous oriented curve in the space of states,

i.e., the (8,0 ) space. Thus, a process may be specified by a

’h ’k
Qo eeoy” 17 od
sequence of values .of

i
£ > 'd‘.d s 9 » 6011“2--"“1\; (5 )

on ¢ in the time interval O0St=o. €Similarly, the reverse process is a process
defined by a sequence of values of (5.1) on ¢ in the time interval gst=2c

subject to the conditions

1;(t) = £(2°'t) ) Ea(t) %(20-‘(‘.) ’
(5.2)

(20-t) .

8(t) = e(20-t) , é°1°2"'°N(t) 9(,102...«”

In any process the wark done by the external mechanical forces acting on

21.
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a part oS{=8 of ¢, and given by (3.18), is a positive or negative depending

on whether the external work is supplied to, or is withdrawn from, the part.

In general, some of the work done results in & change of the kinetic and internal
energies represented by the first two terms on the right-hand side of (3.18)3,
each of which may be positive, negative or zero. Also part of the work done
may be positive with a corresponding absorption of heat by the part a=(=8

or negative with a corresponding absorption of heat by the part. We note that
in the case of an elastic material the different contributions to W will vary
in sign depending on the process and will not be restricted to be either
positive or negative for all processes. Consider any process in the time
interval Ot =g and its reverse process in the time interval g=t=2c. If
the process is reversed in such a way that at the end of the process and its

reverse process the elastic rod has returned to its original state with A9=0,

A8 =0, Ah, ., =0, AX ., =0, Av=0, Aw =0 and, hence, Ae =0, AN=0,
o e e e Oy ij ol ~ ~ T~y ~a a

an =0, A§=O, Ag =0, AI’E':O,AP =0, om =0, Ak=0,
alde...aN ald2..oaN ~ ~ ~ ~ ~

Ak =0 and AK=0, AE=0, then all the work done in the process is
%« 4y

recovered as work in the reverse process? This recovery of work would not be
possible if in every arbitrary process part of Wb al?ays has a positive sign.
With this motivation in mind, we assume that for any arbitrary process in a
dissipative rod only part of the work done is recoverable as work in the
reverse process, the rest being transformed into heat. We therefore assume
that in every process part of the work done is always nonnegative. Then, if at
the end of any process and its reverse process the rod has returned to the
same state, some of the work done is always transformed into heat. Recalling
that W, = 0 in (3.18) in the case of an elastic rod, we interpret the above

assumption for a dissipative rod by requiring that

?If work is extracted in the process then it is absorbed by the rod in the
reverse process.

22.
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Iy, 2 0 (5.3)

for all parts of c and all processes, Where lo, is given by (3.20). Since tl’t2

are arbitrary and w has alresdy been assumed to be continuous, it follows that

W o= P-a(e~e’) -A(¥’+7’6+ = 1 0 )z 0 (5.4)
e e
for all thermo-mechanical processes. Also, from (3.19) and (5.4), we have
)ds dt (5.5)

GoaaB .

2 ] ]

¥ s ren'+ £ o Ul
Jtl‘[a @, N 9%y -0y

so that the external heat supplied to any part of ¢ is bounded above in any

process.
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6. Summary of results from three-dimensional mechanical theory.

Consider z three-dimensional body, embedded in Euclidean <-space, and let
i %
its particles be identified by convected coordinates ;l (i=1,2,3). Tet r

denote the position vector, relative to a fixed origin, of a typical particle

of the three-dimensicnzl body in the present configurstion at time t. Then,

> % 1 . x

1 2 * : *
LG s (; G :C3:t) 5 gi = a£ /aCl g M = 5
(6.1)

o P YRPIEE ik _ 1k He
o "h R BT A0 TRRE 2 BT B

i

where g: and %} are coveriant and contravariant base vectors, respectively,
ik and gik are covariant and contravariant metric tensors, respectively, and
5i is the Kronecker delta. Also a superposed dot denotes material time deriva-
tive holding gi fixed and Xﬁ is the velocity vector.

The stress vector 3 across a surface in the present configuration whose

*
unit outward normal is y may be expressed in the form

* i, L %4k % &g *i
t=v,T /&* = WT B v L TWE =Y & (6.2)

1~ ~

where Tik are the contravariant components of the symmetric stress tensor.
We do not recall here the consequences of the conservation laws of
the three-dimensional theory since they will not be needed in the present
paper.

The parametric equstions ;a==0 define a curve in space at time t which we
assume to be smooth and which we identify with the curve c¢. Any point of c is
specified by the position vector r relative to the came fixed origin to which

*
r 1is referred, where

5= z(Et) =2 (00,08 . Py . (6.3)

Let the boundary of the three-dimensional region occupied by the body at time t

2h.
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be specified by the materisl surface
rl 2 \
F(b 2C 2C) = 0O (6)4)

and by the surfaces {=«@,8. The surface (6.4) is such that (= ccnstant are
curved sections of the body bounded by closed curves on this surfzce.

Suppose now that E,* in (6.1)l is a continuous function of ;i,t znd has
continuous space and time derivetives of order 2 in the bounded region lying
inside the surface (6.4) and between (= a,B. Hence, to any reguired degree of
approximation, £* may be represented as a polynomial in gl,g2 with coefficients
which are twice continuously differentiable functions of {,t. Instead of con-
sidering a general representetion of this kind, we restrict atten<icn here to

the approximation
= r(et) + % (Got) - (6.5)

Given the approximation (6.5) it is known (see, e.g., Green, Lews and Naghdi
1968, Green and Naghdi 1970) that the field equations of the forms (2.12) to
(2.15) can be derived from the three-dimensional equations provided we identify

ga in (6.5) with (2.1)2 and adopt the definitions

L 1
pagy = A = [Juacted® o w= o' = u(dD)
o (6.6)
w*® = [[ucePactac®
and
o= [f Padad® . o7 - [f gt
(6.7)

~

2 = [[ ¢*actad® ,

*
where p 1is the three-dimensional mass density and the integrels are taken over

any surface (= constant bounded by (6.4). For some purposes it is convenient

25.
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to define the curve gl= o, ;2==O in relation to the surface (6.4) so that
yoa= O, but this is not essential. The assigned forces E,Eé are related to
the three-dimensicnal body forces E* and to the effects of the stress vector
over the vcundery surface (6.4) by

(b.2)l

X ¥ 2 4 2 z ik
i = (1 weagtad + fL(rt-ardiad - (Palrdiady
an ~ l l
MY =[] e agtad® + § LT aTad - (PaPthach
where the line integrals are teken along the curve

€ = constis F(gl,;z,;) =S

o
= +
A=Vg. "8

is a vector tangential to the surface (6.4) so that

* a*+* O
Aty —)\va v3-
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i Thermodynamical results from three-dimensional theory

In this section we obtain scme thermodynamical results for a rod-like body

on the basis of the recent thermodynamical theory of Green and Naghdi [1].
Thus, slong with the three-dimensicral tempersture field o =8 (L*,t)>0 we

I admit the existence of an externzl rate of supply of heat -H% per unit area
acting zcross the boundary aﬂ* of a region of space R* occupied by the body in
the present configuration at time t. Also we assume the existence of an
internsl surface flux of heat -h = -h*(gi,t ;Xf) per unit area across each
surfzce BP* which is the boundar; of an arbitrary part P* of R*. We define the
ratic of the heat supply r* to temperature e* as s*= s*(gi,t) and call this the
externazl rate of supply of entropy per unit mass. Similarly, we define the
ratios of H* and h* to temperature, respectively, as the external rate of
surface supply of entropy E* per unit area of BR* and the internal surface flux

* . 4 * 7 *
of entropy k =k ({ ,t;v ) per unit area of 3 . Thus
=HONER A= a k] e (7.1)

In addition, throughout R* we assume the existence of a scalar field n*==n*(gi,t)
per unit mass, called the specific entropy and an internal rate of production

of éntropy g*= g*(ci,t) per unit mass. The contribution of the latter to the

b rate of production of heat is e*g* per unit mass.

We recall the balancé of entropy in the form

4 * ¥ * * * * \
- pMdv = p (s +g )dv - k da (7.2}
’ dt jp* jp* IBP*

*
for every material volume occupying a part f in the present configuration. It

* *
s follows that k is linear in v s 1.€.,

. (7.3)

*

* * * ¥
where p  is the entropy flux vector. Then, from (7.1) and (7.3), h =8 p -V

~

27.

R e - - : " R ﬂw Pt




*
and we may define the heat flux vector q by

*
g =8p . (7.4)

* oK * * *
p M =9(S+§)-divg* , (7.5)

where
1 1
aiv p’ = g 2a(p &%) /ac" . (7.6)

% % N X
Multiply (7.5) by € "¢ “...C and integrate over an arbitrary part @ in
the present configuration. After using (7.3) and some straightforward manipula-

tion, we obtain

* x @ a, Q, d Q.
0o 2 Mav= o (s e 2o f 0 % T
e 3

+ I kP 1;0/2... aN cee 4D C"Ncal...{.,Q‘N-l)dv et LU

*
We now suppose that P is a region bounded by the surface (6.4) and by
{=a,B. Then for a rod-like body, from (7.2) and (7.7) we may derive the
balance equations (3.5) and (3.6) without any approximations provided we make

the following identifications:

’ o
= el Lo, = [ R

- ﬁ' ws ag ag® - § K 2Ll B)ac - (v2a2 el (7.9)

(7.8)

*°'1 2 %% 1.2
s .. dgdg
orlo:2 -y .[ .

% L [+ S.") -
- § P 2 L Mo - (b5 L, (7.10)

SR

= [] we'actag® (7.11)
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_ .3 pp % & @& 4 5
xg“:.“z"":: E xg“l“e"'“rz+‘]‘l SR L
(7.12)
= o b N S s S B, o RIS "0 N, TIRY
)‘galag--a..—.iug(p oy S e S e A e g sl agac L
po 2 ¥ ~ X

« = 1 e (@e®)Pactad = [] p™3¢%actad®

: 29 oo

Taay oy [[¥ %™ Machae (7.13)

- 1 .
=[] o . . .c Magteff

We also recall the three-dimensional equation for the conservation of

energy, namely

* * *. K * ¥ * Ko x ¥
*(% ‘vt Jp dv = I «(s9 +tE ¥ )p dv*—[ *(E- x*- k 9 )da , (7.14)

a4t
JP o P “ap

dt

*
where ¢ 1is the internal energy density. Suppose in addition to the approxima-

tion (6.5) for the displacement vector, we adopt the approximation

% o o
8 =0+ T @O L gag...; ¥ (e>0) (7.15)
a,N %1% %
for the temperature field. The summation in (7.15) is over all values of
N=1,2,...,K and all Greek indices have the values 1,2. The functions
0,6 depend on (,t and @ is completely symmetric in its
o bl e o M
suffices. Then, for 2 rod-like region bounded by the surfaces (6.4) and (= @,8,
from the energy equetion (7.14) we can derive the equation of balance of energy

(3.8) for a directed curve provided we make the identification

e = Jf'.[ u,e*dcldcz 3 (7.16)

in addition to (7.8) to (7.13).
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8. Restrictions on heat flux vectors and internal energy

Suppose that the three~dimensional rod-like body is in equilibrium with
+#*
v =0 and 2ll response functions zre independent of the time. As part of their
thermodynamic restrictions on constitutive equations, Green and Naghdi [1]

have adopted the classicel inequality

* * * *
-q g 20 or -p -

~ ~

Pl
v
O

* *
g = grad @

for 211 time-independent temperature fields. Integreting the inequality (8.1) 2

with respect to ;l and gz, we obtain

1 x
-” gp -gacacczo . (8.2)
With the approximstion (7.15) for e* and with the help of (7.12)2 and (7.13),
it follows from (8.2) that
AZ @ +k3g/3C + L k /3¢ 50 (8.3)

a,N °‘l°'2"'“N§°‘1“2' e a,N %" ‘“N°e°‘1°‘2‘ coy
for all equilibrium displacement and temperature fields. With the above motiva-
tion, we add an inequality of the form (8.3) for all equilibrium states to the
thermodynamic inequality (5.4) which was derived directly from one-dimensional
postulateé.

Next, suppose that the Cosserat cﬁfvé R is at rest with

LEg 5=l . (8.4)

for all time and with the deformation gradient, director and director gradient
each constant for all time. Tﬁen, by (2.12), p is independent of t. In
addition, we restrict the temperature fields to be spatially homogeneous so
that 9=0(t), @ =0 (N=1,...,K). Keeping these conditions in mind,

al%' ocaN
from a combination of (3.7) and (3.9) we have
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AMr+ T )-3h+ Th )/3¢ = Ae . (8.5)
a,N 9% %y a,N %1% %y

In view of (8.4), no mechenical work is supplied to the Cosserat curve fR. Then,
using (8.5), the heat supplied to a part ¢=(Sp of the material curve of R

during the time intervsal tl§t§t2 is

t2 B g
u=j {j\(r+ Lr Jeds - [h+ £ h 17 }at
t, "a N B O v+ 2 Ol o8 Mg e
B |t
= [Tpeas (8.6)
o tl
Suppose that the rod is in thermal equilibrium during some period up to the
time tl with constant internal energy € and constant temperature 9=3. We
assume that whenever heat is supplied to the part =({ =8 under the azbove
conditions, the tempersture g(t) throughout the part will be increased, i.e.,
t2
[e]t > 0 whenever H >0 . (8.7)
1

Provided that pe is continuous and remembering that p, which is independent of

t, is positive and a,B are arbitrary, it follows from (8.6) and (8.7) that
9(t) -9 > O whenever e(t)- €, >0 (8.8)

for all t> tl.
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9. Symmetries.

In the rest of this paper we restrict attention to the case in which K=1
in the earlier part of the paper (§§3,4,5) so that we consider only three
temperature fields 9’61’92' The inclusion of the two temperatures 61,92
allows us to take some account of temperature variations across the thickness
of the rod but the more general situation K>1 can be dealt with in 2 similar
way. We also restrict attention to rods which in a reference configuration
are straight. We therefore consider the form of the Helmholtz free energy
function in (4.13) which is such that the rod described in §2 models the main
features of a three-dimensional elastic rod which has the following properties
in its reference configuration:

(i) It is straight with constant cross-sectional areas normal to the
line of centroids of sections, (ii) each cross-section has two orthogonal
axes of symmetry through its center of mass, (iii) it is homogeneous and of
constant temperature, (iv) the material of the rod possesses rhombic symmetry
with respect to orthogonal axes of symmetry and the line of centroids.

We choose the initial reference curve C to be along the direction of the
constant unit vector e., and the initial directors in their reference con-

~3
figurations to be specified by

BTy o BTy o Bt
where 2&’22’23 are a constant orthonormal system of vectors. Also, Dl’D2 are

nonzero constants in line with (i) and (ii) above. The Helmholtz free energy

function (4.13) then reduces to the different functional form

A
V= '(YiJ’Kdi’e’el’ 23 l’D2) s (9.2)

which by virtue of (iii) does not depend explicitly on ®,(. Moreover, recalling

(6.5), our theory models a three-dimensional rod-like body which in its reference
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*
state has a position vector R specified by

\O
(€N}

R = Ce ~+§1D e -+g2D &, » (9.
~ ~3 11 2~2
Materials with rhombic symmetry with respect to the three directions & contain
three classes, namely rhombic-pyramidal, rhombic-disphenoidal and rhombic-
dipyramidalf For each of these classes, it can be shown that the three-dimensionsal
energy function for an elastic material is also form-invariant under the three
separate coordinate transformations
(ol ‘Ciwas s B ety dely el (9.4)

The conditions (9.4) are those which arise from symmetry restrictions usually
called orthotropic symmetry. In the direct formulation of the theory of rods
under discussion, we replace the notion of rhombic symmetry by that of orthotropic
symmetry with respect to three orthogonal vectors Ei' Therefore, we further assume
that the one-dimensional energy function (9.2) is unaltered in form under each of
the transformations (a) to (c) listed below:

s Wl LRt TR acy MR Rt R

(a):
sl SRR e 8, 6, + 8 >

i.e., under the transformation

(¢

1.7 1oo¥y30K100K0) 9K 308050, ) == Gy s

Ksa = K

= Kap 2 Kaq

00 , B -8 , 8 =8

i.e., under the transformation

+See, for example, Green and Adkine [8] which contains additional references
on material symmetries.

Atndiia




G2 = {Y123Y23’K125K213K23,eg’Dg} o G2 ¢ |

Yll - Yll ’ Y22 - Y22 ) YSE - Y33 ) Yl3 - Yl3 - (9.6)

K, - K 3 K- - K ) 8 - B s e, - Q

13 13 Al il

and
Dy =Dy s DpeDy s B s Gotdy s fd o Bl
=8 5 =8 » B~6 ;

i.e., under the transformations

Yig " Yoy » Yog " Vagr By TNy 0 Kgp < g 0 Kgg <oy o Be <8,

K. -k K., = K (9.7)

Yia M1 * Y T Yop 2 Wyg T YWaa v Mg T s o Toa3 ™ Thg- 2
0~0 , 0 —=8 , 8, -0, .

Next, in view of the condition (ii), we assume that y in (9.2) is

unaltered in form under the transformation

i.e., under the transfofmations

s BBy 5 Yag ¥y » Fyp <Ky, o

and § is unaltered in form under the transformation

(6) El -y El 3 22 4-E2 ’ Ea - sa ¥
i.e., under the transformations
Dy=Bp » Bp==Dy » Vg Yoy » Fga Ry s 008 3 O =0, (00
31‘.

CE e BT Ba sy (9.8a)
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% similar discussion may be carried out for the functions g,ga,ga,k,ka
cx22rt that each of these functions may depend on 38/3C, aea/ag in addition to
trccz specified in (9.2). In view of the energy identity (3.12) we assume

223 28, €8s k36/3C, kaae/ag for @=1,2 are each unaltered in form under the

<rzrcformations (9.5) to (9.8). To each of the transformations (9.5) to (9.8)

wsz =zdd, respectively, the transformations

(a): 28/3¢ ~ 20/3C , 26,/3C =-28,/3C , 20,/3C ~ 36,/3C

(b): 20/3¢ — 30/3¢ , 26,/3C -~ 38,/3C , 238,/3C ~-236,/3¢ ,
(9.9)
(e): 28/a¢ ~-20/3¢ , 26 /3¢ ~-28 /3

(@) and (e): 26/3C = 26/3C aeo/ac - aeo/ac 5

Lfter applying invariance conditions to y,g,ga,k,ka using (9.5) to (9.9) we
specify the initial directors to be coincident with the unit vectors €15805

i.e.,

In order to make the above conditions explicit we limit our attention to
the linear theory of a thermoelastic rod whiéh‘is in equilibrium, unstressed
znd at uniform temperature in its reference configuration. For this linear
theory the position veetor r, directors g_q and their corresponding velocity

fields assume the forms

r = R‘*E. y 4, = B

~ o~

(9.11)

B v Uy =0ty v ZP0E BT Wi
znd we replace @ by @+ 9 so that 9,61,02 are small and ® is the constant

reference temperature of the rod. Using (9.10), the kinematic measures of

deformation become
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Yij si'.zj+3j°ii= 1J+ 44 2
(9.12)
Kyi = 38o5/3C 5 Byy = 3uy/3C
The respcnse functions n,m ,p and external fields f,4 are referred to the
~ ~ A~ ~"~
orthonormal basis ok Thus
D™l o Eu = Myili 2 20 “ Rty
(9.13)
gahe » BT k%
and the relations (L4.16' simplify to
A A
n3 = 2p ajL > n_=p gsj_ >
Y33 - a3
A A
no+n, =k , p =pSL 1k
ab 20
Lt S "

where p is now the constant reference density and in evaluating (9.114)2,3 the
responge function ? is regarded as a function of Ya3 and %(yaﬁ-fyaa). The
equations of motion (2.12) to (2.15) are replaced by their corresponding
linearized forms in terms of nyHToe and P With.}= ps and the linearized
entropy balance equations still have the forms (3.7) with A=p. All these
equations are listed below in four groups.

'We omit detailed discussion of the invariance conditions satisfied by ¢,

which is now a quadratic form in Yij’ i,e,ea but note that the final results

Ko
separate into four groups corresponding to flexure (2 modes), extension and
torsion of the rod. Similarly the symmetry restrictions on g,ga,k,ka, which
are now linear forms of degree one in YiJ’Kai’e’ea’ae/ac and aea/ac place these

functions in the same four categories. 1In addition, these functions are subject

36.
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to the identity (4.7), which in the present context becomes

p(6+8)g + p6 €, + PB,E, + k36/3( +k, 30, /3C +k,28,/3C = 0 (9.15)
and the inequality (8.3), namely
P88, + P88, + k38/3C + k28, /3( + k,36,/3( 5 0 . (9.16)
Symmetry restrictions of the type considered in this section must also apply
to the kinetic energy (2.5) so that the inertia coefficients yOEB reduce to
ALl 22 12 21 -
Ry ST el 5 ¥ sy =0, (9.17)
where for a homogeneous rod, o ,0, are constants. The Helmholtz free energy
function § can be expressed in the form1~
V= ‘UF1+¢F2+WE+¢T s (9.18)
where the subscripts F1,F2,E,T attached to § on the right-hand side of (9.18)
refer to the four modes of deformation mentioned above and we recall that we
adopt the values (9.10) for Dl’D2 after the discussion of invariance. The
values of the constituent terms in (9.18) are listed below and we also include
the notation ml,m2,m3 for the components of the couple m acting over any
section (= constant of the rod where
m=me, - (9.19)

All response functions ni’"ai’pai’g’ga’k’ka are assumed to vanish in the
reference configuration. The identity (9.15) and the inequality (9.16) are

also used in obtaining expressions for g,ga,E;,k,ka.

'In (9.18), as well as the rest of this section, we use the same symbol for

a function and its value.
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Flexure F1

2

o s >
20¥py = Kg¥oq * Kygkog * Kogos8, + ko (8,)

>

m

= - = ] ) %-
T =n 1 = p23 K15<23+4k2532 >

23 = Pz = Eg¥oq
= - - ~1~ = E = = C
PTlp == kpoBy = Skpglay 5 & = CikpatcpBy 5 B =8, 5 kK, €,98,/3C >
Yoz = 8p3t0,/30 5 Kyy = 36,5/3C 5
2 2
an,/3g + pf, = p3Tu,/3t°
am, /3 -n, +pl,. = pa 323 /3t2
1 gl 29 %23 ’
paT,/3t = p(s,*€,) - 3k, /3¢

c, 50 , e, 50

Flexure Fz*

)2

s °
2P¥py = Kg¥y3t R gyt Ky Ky 28 Tk 5(0)

= o - = - - 1
Ty =y =kg¥iq » By ==Pig =Koy ~T0®

= - -1 = = =
Py =-kyg8 =3koukyg 5 &) = DiKj3+by8) 5 B =by0 , k) = €20,/3

Y3 = 613+aul/ag > Ky = 3513/ac b | |
9.21
an, /3¢ + pf, = pau, /ot
1 1 1 ’

" . paad
3y/30 +0) - phy g = - P 3765/

paM, /3t = p(s +€,) - 3k, /3¢

b. 0 , @

> =0

£

T'I'his corrects two misprints in equations (9.‘5)l 7 of Green, Naghdi and
Wenner [5]. :
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Extens 1on* E

= 2 = 2 2
) = . + +k
2P¥p = Ky¥pp FRoVpp t KaYag t KoYy Yoo * KgY) 1 Va3 Y KgYonYas

2 2

o T Kop * Ky 7K1 K00

1o TRy

2
o+ \
"Kp Y118 Koo Ypp®t Kyavaa8 + kyg(e)”

Yok $2hoVop T Hg¥a3 *Xp0f

11 1Y11 T B Yoo Y KgYgg T Ky 8 5 Tpy = Koy

FEE T @ 4 ‘

Dy = Kgvyy *Eg¥po
g 3 iy
P11 = Kjofyy ¥ 2K gMop 5 Ppp = 3KyoKyg v Koy
=0 oM = - 3K,1v = BKooVop = 3KyoVaa ~Kig8 5 k= g,26/3(
2 2801 e tooigoiiiREagiige Sy Ges e 1 ’
Y = 2311 1 Nop ¥ 2322 " e 23“3/ 3¢ >
Kip = 381/3C 5 Koy = 38,/3C
2 2
+pf, = t
an3/ac pEy = P2 u3/a 3
30 [0+ Plys =Ty = P B By /B
P13 s 5 QL T 1° 81 ’

3] 20— 2 '
apze/ac *phyy " My = P, 622/31: .

pdT/3t = ps - 3K/3C gléov.“ ‘

f

In writing the coefficients 'ch-} and ;% an overbar is used to avoid confusion with y
and F2. -

the entropy fluxes K.L’ka in




yﬁ
Torsion T
e 2 2 2
2oy = k), (v oY) )T ke pKTp Ry Koy F Ry oK
ok LA - =
P Mo = Ty = 2K {vjp*¥py) 5 Ppp-Pyy =my

2 1 3 1
; P1p = KyoWyp ¥3ky Ko 5 Ppy = Kygko) +3K)) K5

(9.23)

Vip = Vo1 = B1pt 0y Kpp = 385/30 5 Ky = 38,/3C

-

3 2w 4 2
3 ,/30 - M, ek, = P37 3t

3 B ;oD
30 /3C = Myy * Phy) = Py By /3t
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Straight orthotropic rod.

We consider the special case in which the direct theory models the msin
orcperties of a straight three-dimensional linearly elastic rod whose line of

czntroids is along the constant unit vector e Each section of the rod is

~3°

sitmetric with respect to two directions specified by constant unit vectors

e.,se. In addition the rod is orthotropic with respect to the constant ortho-

*
r.crmal basis & (e ’~2’e ) and it is homogeneous with constant density p .

The coordinates along the basis g, ere denoted by X, = (x,y,z), the constant

-— *
reference temperature by 6 and § 1is temperature which is zero in the reference

* *
stzte. If u =u,e. is the displacement vector and e.,, the linear components of

~ 1~1 ij

the strain, then
i * 1
. 5 . = 2 .
eij 2(u, eJ u’J e.) 2(ui . uj’.) 5 (10:1)

*
where ( ) i==3( )/axi. The Helmholtz free energy function § now takes the
b

form
oY =% ii ®15%u " iJeije*'% p (c/8)e™ - "*“oe* ’ (10.2)

where
e ii ij ‘ji e (10.3)

The coefficients c,no,cij,c are constants and, since the rod is orthotropic,

ij
k4

+
the only nonzero components are

11 11 11 22 22 33 23 13 12 (10.4)

11 2 Spp c33 » €11 2 Cop s c33 s Cop s c33 g c33 s c23 " c13 s C5

*
The corresponding components of the stress tensor t,, and the entropy 7 are

ij
given by

*cee Green and Zerns [9, §5.4].

hl.
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k * * ¥, =k
tlj v cig‘ekz-cijeije ] O*Tl = cijeij+p (C/B)S . (10-5)

* *
Also, the heat flux vector q and entropy flux vector p have the forms
* * — *
= = - N
g‘ ep 5 2‘ D.e. ] pi (dij/e)e,j ’ (lJ.6)

where dij =0 if i£k and d,, ere constants. For an elastic body

J

*

* - % * * * \
g (6+6 ) =-p -g , g =egrad® (10.7)

) *
and if only linesr terms are retained in € then

*

B O o (10.8)
The position vector of points in the rod in its reference state is given
by

5 .
o — /
§ = X;e, = Xe +y52+z33 (10.9)

and this corresponds to (9.3) with x= Cl, y= ;2, z=( and D1=D2=l. The

integrals in (6.6), (6.7), (6.8), (6.9), (7.8) to (7.13) and (7.16) are all
with respect to cross-sectional areas in the reference configuration of the

rod and their boundaries
F(x,y) =0 , (10.10)

with L= e, and A%*=0 in (6.10). Then, from (6.6) with Cl=x, C2=y, C3=z, we

have
p=p 5 K=ps=Ap Ml=kv =912 s M2=kv =le »  (10.11)
where

A= h dxdy , Iy = H vaxdy , I, = |j xaxdy (10.12)

-




y
the integrals being over any cross-section of the rod.
In order to make identification of the thermoelastic coefficients occurring
in the direct linear theory in (9.20) to (9.23) we make some use of the linear
results (9.11) and (9.12), together with the approximations (6.5) and (7.15).
Thus,
i - x5, +y6, = (u, +X6.. +y6..)
B SRYARYES T TR PHE, e
*
® = 0+x8, +y8, , (10.13)
Vig = 84t 8y 5 83y = /30, K, =38 /3¢
We consider first the thermal coefficients in (9.20) to (9.22) whose values may
' ©  be identified by a direct use of the formulae (7.8), (7.11) to (7.13) and the
results (10.5)2, (10.6), (10.7) and (10.13). Thus
6 =0 s ey =c, =-Ady/(p8) , e, =-T,d5,/6 ,
Fl : (20.1%)
k. &y el /6 K, =-2I
20 P DRGSOy
by =0, by,=Db=-4d,/(p8) , e =-12d33/e ;
F2 : (10.15)
* —
kl9 = - p ch/e ) k2’+ o, 2I2C33 ’
i ; A =-A K “ac/3
< Bgn ®"M%yy » Ko mchegy o By Rl s Bg=-phefy
E: (10.16)

gl =4 Ad33/3

There are no thermal coefficients in (9.23) for the torsion group T.

e

Turning to the mechanical coefficients kl""’k » Wwe note that values for

g
many of these have been given for isotropic rods by Green et al. [5]. Here

we follow similar procedures but now applied to orthotropic rods which also
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have two geometrical axes of symmetry in each cross-section. We consider first
the flexure groups F1 snd F2 in (9.20) and (9.21). A comparison of the solutions
of equations (9.20) =nd (9.21) for the problem of pure bending of the rod by

) couples over its ends, with the corresponding solution of the three-dimensional

equations suggest thzt we take

o . ! 33 il 33
TR kg = Il/s33 » k= 12/533 " (10.17)
1) bl i L .
where s are the invsrse coefficients to ¢ defined by

kg

sljcmn = %(61;.6

mn
Ny +525k) 5 (10.18)

n
L
where 6§ is the Kronecxzer delta and sig are subject to the same symmetry
restrictions as c;g in (10.3). When the rod is isotropic the values (10.17)
reduce to those given by Green et é_l. (1967) and Green et al. (1974b). In

order to specify values for the remaining coefficients kS’k6 in F1,F2, we
consider the complete solution of the static isothermal problem in F2 in which
the rod is unloaded zlong its major surfaces. Thus, from (9.21), when £, = Ll3= 0,

the static equations may be integrated in the form

n =N , m =M-Nz ,

1t 2
10.19)
2 3 2 (
— Nz Mz Nz~ . Mz N
6,5 = o Ry i + =— 4 (= -R)z+S ,
13 2kl6 kl6 1 g-kl6 2kl6 k6
where N,M,R,S are ccnstants. This represents the solution of the flexure
g
problem in which a team of length £ in the region 0=z =y is loaded along an
axis of symmetry in the x-direction by a load N. If the couple is zero at
; | z=4 and the rod is clamped at the end z=0 so that u, =0, 313= O there, then
g i .
) : - Nz ,z Nz z Nz
= N(#-2) , bo==—(5-8) , = (4-3) +5= . (10.20)
: - 33" R 2 17 2k, 3 T kg

i The coefficient k6 cnly appears in the expression for the displacement u. so

1

Ly,

sl
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that in order to find a suitable value for k6 we must consider the complete
three-dimensionzl flexure problem including displacements. The flexure of a
symmetric orthotropic rod by a force N at the end z= 4, along an axis of

symmetry in the x direction, is specified by displacements

LJS 3
* B .l aap
u = - gy (55x7 - s50y7)(4-2) + -—‘3 ( 6 v Py,
g8
v* = - _fii (2-2)xy , (10.21)
2
*
L Il {Sgg(lnz -3 P)xrala,y) rLPY- B
. 4

where P is a constant representing a rigid body rotation and L is a constant

given by
sll s22
2L _ a8, 38 )
23 = 13 23 = e (10.22)
23 13
Also,
23‘g;g 13 __1 ;
23 + 83 ay 0 (10.23)

subject to the bouﬁdary condition

21 ll 2

L{%% + (L+3 sgg)y -% g% s +m{M + (2L - )XY}Sig = O (10.24)

33

over the surface (10.10), where (4,m) are direction cosines of the outward

*
normsl to this surface. Recalling the approximation (10.13) for u , from the

comparison of (10.21)l 3 with (10.20) we again obtain the identification (10.17)2
3

for kj¢. In view of (10.20)2 we choose the rigid rotation P in (10.21)3, and
the function §, which is even in y and odd in x and is arbitrary to the extent

of an additive constant, so that

$(0,0) =0 , P=-N-ai(39;91/12

45.

. (10.25)
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Then, comparison of (10.20)3 and (10.21) at the end z=0 of the rod for small

values of x,y yields P==N/k6 so that

. _ . 28(0,0) ) €
F2 : kg = 12/ z . (10.26,

Analyticsl solutions for the flexure problem specified by (10.23) and the
surface condition (10.24) may be found for a number of simple cross-sections
of the rod. Ve merely quote the final value obtained for k6 for a circular

cross-section of radius R, namely

nR (3 lg-+s23)
13(14513 2673 4 5

23 33)

Similerly, when the section is circular, for flexure F1 we have

2 23 L3
™ (3523-+sl3)

B 23 13
(hs +2sl3 33)

When the rod is isotropic, these reduce to the common value

F2 : kg = (10.27)

Fl : k

(10.28)

ks = kg = 2umRE (1+v)/ (342v) (10.29)

where v is the Poisson ratio. This may be compared with a value

6umRE (14+v)2/ (T+1kv+8v2)

found by Green et al. [5] by a different procedure which is slightly greater
than (10.2%) for values of v in the range OsSvs3.

For the torsion group T we compare first the solution of equations (9.23)
with the Saint-Venant torsion problem in linear three-dimensional theory in the

manner described by Green et al. [10]. In the present context, for an ortho-

tropic rod, this leads to the choice
T & By =k e 2k12"klh = 8 (10.30)

where § is the classical torsional rigidity for the rod. With the choice

L6.
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(10.30), the isothermal static equations in (9.23) divide themselves into two

groups, namely
— _l 3 iy __ o = i} s
my = (K, -3 k)36, - 85)/32 , amg/ez+pllyy-4y)) =0 (10.31)

B 3 - .= X A
PiptPy = (ko +3 k) )a(bp 48,500/ 5 mp =My = K (8,4 85) s

(10.32)
(3(pyp +ppy)/R2] - 2mp + (4o + 4yy) = O
We now consider the three-dimensional solution for displacements and stresses
given bty
* * *
u, = g Ty u2 = TRz u3 =0 4
(10.33)
R il b os
t12 = 2c12Lz 5 tl3 = Lcl3y y t23 = L023x v

The system of stresses in (10.33) is in equilibrium and can be maintained with
suitable surface tractions. Corresponding to this we see from (10.13) that an

exact solution of equations (10.31) and (10.32) is

810 = 851 =Lz 5 phyp = plyy T Mp =Ty s

, (10.34)
= 'L = g =
Pip+ Py = 2(kjp*3 k)L 5 my =My = 2k Iz .
With the help of (6.7), (6.8) and (10.33), we make the identifications
g 13 23 . 12
Pip+Ppyy = (Ilcl3+12c23)L s M, = 2hc Lz . (10.35)
This leads us to choose
; ‘ i 13 23 _oa R
T: k12+% kl)_‘_ i %(Ilcl3+12c23) ) kh o Ach . (10.36)

A complete set of torsional coefficients is given by (1C.30) and (10.36)..

h?-
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Finally we consider the extension problem governed by equations (9.22).
Following Green et al. (5], the values cf many of the coefficients can ce
specified by a comparison of static sclutions of (9.22) with homogenecus

deformations of the three-dimensional rzd. This yields the values

R il g L
Ky =Rheyy 2 Ba=RbGyy 5 ¥ xEatg o
B (10.37)
b1 : e y , 22
k = L {n =T A =5 A
p Ty s kg =T hegg o Rg w3 hng

When the rod is isotropic, the results (10.37) reduce to those given in Green

et al. [5]. Next, we consider the thres-dimensional solution for displace-

ments and stresses given by

* * > 1 2
u, = Ixz , u2 Myz u3 = 5 Nz -
L 1 171 =
t, (e e L+ oy L+ 33 - T
(10.38)
Sl 22 22 ks 13
tyo = (e oLt c22M+c Nz , t13 = l3Lx 3
s 22 33 -
t33 = (c L+ c33M+ c--N)z 5 t23 €53 .
where L,M,N are constants. The system of stresses in (10.38) satisfies the
equations of equilibrium if
13 S 2P 33%: L
(e )3+ )L+(c 3*cs 3)M+c33N %0 (10.39)

and can be maintained by suitable surface tractions. Recalling the expressions

(10.13), it follows that the corresponding results in the direct extensional

theory (9.22) are:




Yy = 2311 =2lz , Yy, =28, =Mz, Yy, = 2au3/at = 2Nz ,
Ky =L » K,=M,
RS ST T
phyy =M = A(cllL-+c22M+-c33N)z s
(10.40)
: " v i 22 22
Plop = Tpp = AlcpltcM+ciz
pf3+A(c§:3lL+ c§§M+ cggN) =
e L e
Pig = Bkt @ Bp M 5 Doy = 8 Mok L
With the help of (6.7), (6.8) and (10.38) we make the identification
e 13 . 23
Py = 12c13L 5 Py = Ilc23M : (10.41)
Comparison of (10.41) with the corresponding expressions in (10.40) leads us
to choose
: = 13 3 23 i
B klO = 12c13 s Kyq = Ilc23 3 kl7 0 (10.42)
for the values of klo,; "Kl7' A complete set of values of coefficients for
the extension problem are contained in (10.16), (10.37) and (10.42).
When the rod is isotropic and has circular cross-sections of radius R
we see from (10.30), (10.36), (10.37) and (10.42) that
k:v=k =k _=k =l;le‘ K,; =k =0
10 11 12 116 R ¥ 1l 7 .
(10.43)
i & . 2
¢ kh = 2kl k7 = u.ﬂR .

Previously (Green et al. 1974b), all constitutive coefficients in the csse
of an isotropic rod of circular cross-section were determined except klo’kll and

k The sbove more general development, which is valid for orthotropic rods of

2 by s
circular cross-section, upon specialization also providés appropriate values for

S - T

——— -

the coefficients klO’kll and k17 in the isotropic case.
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This paper is concerned with thermomechanics of slender rods by & ‘
direct approach based on the theory of a Cosserat curve comprising j
a one-dimensional curve and a pair of directors attached to every Y
point of the curve. 1In all previous developments of the thermo- |
mechanical theory of rods b  direct approach, only one temperature 1
field has been admitted. Thic allows for the characterization of

temperature changes along some reference curve, such as the lige of wp ,af
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20. (continued)

centroids of the (three-dimensional) rod-like body, tut not for temperature
changes across the rod cross-section. A main purpose of the present study
ie to incorporate the latter effect into the theory; and, in the context
of the theory of & Cosserat curve, this is achieved by a recent approach
of Green and Naghdi [l,Ef;to thermomechanics which provides a natural way
of introducing more than one temperature field at esch material point of
the curve. Apart from full discuscsion of thermomechanics of rods and
thermodynamical restrictions arising from the second law of thermodynamics
for rods, attention is given to & discussion of symmetries (including
msterial symmetries) of rods which in a reference configuration are
straight., The paper also contains a detailed discussion of the linear
theory of strasight, elastic, crthotropic rods, including the determination
of the relewant constitutive coefficients.
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